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Lattice Green’s Function in the General
Glasser Case
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We have investigated the lattice Green’s function for the general Glasser cubic lattice.
Expressions for its density of states, phase shift, and scattering cross section in terms
of complete elliptic integrals of the first kind are derived.
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1. INTRODUCTION

The lattice Green’s function (Economon, 1983) is defined as

G(E) = Ä

(2π )d

∫
1BZ

F(Ek)

E − E(Ek)
Edk (1.1)

where E(Ek) represents a dispersion relation,F(Ek) is an appropriate function,
Ä denotes the volume of the crystal in the real space,d is the dimension, and
1BZ indicates that the integration is carried over the first Brillouin
zone.

In this paper we report on the lattice Green’s function and the paper is or-
ganized as follows. Section 2 is devoted to the general definition of the diagonal
lattice Green’s function and its form, inside and outside the band, for the cubic
lattice in terms of the first kind elliptic integrals. This section also contains the
formulae for the density of states (DOS), the phase shift, and the cross section
for a point defect case. In Section 3 we present the results and discussion for the
special Glasser case. Finally, the details of the Green’s function derivation inside
the band are given in Appendix A.
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2. LATTICE GREEN’S FUNCTION

The Green’s function for the Glasser cubic lattice is defined as (Economou,
1983; Glasser, 1972; Glasser and Zucker, 1977; Hioe, 1978; Montaldi, 1981; Sakaji
et al., in press)

G0(E) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dkx dky dkz

E − E(kx, ky, kz)
(2.1)

where,

E(kx, ky, kz) = a1 Coskx(1+ Cosky + Coskz+ Coskx Cosky)

+ a2 Cosky + a3 Coskz+ a23 Cosky Coskz

The special casea1 = a2 = a3 = a23 = 1, refers to the Glasser case studied by us
elsewhere (Sakajiet al., in press). Integrating the above equation and using the
method of analytic continuation, the diagonal Green’s function outside the band
has the form (Rashid, 1980)

G0(L , L; E) = 4

π2C
K (k+)K (k−), E > 4a1+ a2+ a3+ a23 (2.2)

whereK (k±) is the complete elliptic integral of the first kind and

k2
± =

1

2

[
1±

√
A2− B2−

√
(1− A)2− B2

]
(2.3)

C =
√

(E − a2+ a3+ a23)(E + a2− a3+ a23)

A = 4(Ea23+ a2a3)

(E − a2+ a3+ a23)(E + a2− a3+ a23)
(2.4)

B = 4a1(E + a2+ a3− a23)

(E − a2+ a3+ a23)(E + a2− a3+ a23)

Green’s function for the perfect lattice inside and outside the band can be
written as (some mathematical manipulations are given in the Appendix)

G0(L , l ; E) =
4
π2C K (k+)K (k−), E > 4a1+ a2+ a3+ a23

K (ν+)K (u−)+K (ν−)K (u+)+i [K (ν+)K (u+)−K (ν−)K (u−)]
D ,

−(a2− a3− a23)(a3− a2− a23) < E < 4a1+ a2+ a3+ a23

 (2.5)

where

y± = −
√

[B2− (1− A)2] ±
√

B2− A2 (2.6)
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ν2
± =

1

2

(
1±

√
y2−

y2− + 1

)
(2.7)

u2
± =

1

2

(
1±

√
y2+

y2+ + 1

)
(2.8)

D = π2C

2[(y2+ + 1)(y2− + 1)]−1/4
(2.9)

Therefore, the DOS is

DOS0(E) = [K (ν+)K (u+)− K (ν−)K (u−)]

πD
, −(a2− a3− a23)

× (a3− a2− a23) < E < 4a1+ a2+ a3+ a23 (2.10)

We consider the case where perfect periodicity is destroyed by modifying
just one site (the L site). The situation can be thought of physically as arising
by substituting the host atom at the L site by a foreign atom (Economou, 1983;
Rickayzen, 1980) i.e., a localized zero-range potential of strengthε′ is introduced.
In the tight-binding model,ε′ is proportional to the charge difference between the
impurity other electrons and those of the host atom.

Thus our Green’s function for this single impurity is

G(L , L; E) =
K (k+)K (k−)

(π2C/4−ε′K (k+)K (k−) , |E| > 4a1 + a2 + a3 + a23

D[K (ν+)K (u−)+K (ν−)K (u+)+i (K (ν+)K (u+)−K (ν−)K (u−))]−ε′[K 2(ν+)+K 2(ν−)][ K 2(u+)+K 2(u−)]
[D−ε′(K (ν+)K (u−)+K (ν−)K (u+))]2+ε′2[K (ν+)K (u+)−K (ν−)K (u−)]2 ,

−(a2 − a3 − a23)(a3 − a2 − a23) < E < 4a1 + a2 + a3 + a23


(2.11)

The DOS can be written as

DOS(E) =
1

π

D[K (ν+)K (u+)− K (ν−)K (u−)]

[D − ε′(K (ν+)K (u−)+ K (ν−)K (u+))]2 + ε′2[K (ν+)K (u+)− K (ν−)K (u−)]2

(2.12)

TheS-wave phase shift,δ0, is defined as (Doniach and Sondheimer, 1974)

tanδ0 = πDOS0(E)

1/ε′ − ReG0(E)
(2.13)
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Here, ReG0(E) refers to the real part of Green’s function inside the band. After
some mathematical manipulations, we obtain

tanδ0
K (ν+)K (u+)− K (ν−)K (u−)

D/ε′ − [K (ν+)K (u−)+ K (ν−)K (u+)]
(2.14)

The cross-sectionσ is defined as (Doniach and Sondheimer, 1974)

σ = 4π

P2

π2[DOS0(E)]2[
ReG0(E)− 1/ε2] + π2[DOS0(E)]2

(2.15)

Here,P refers to the electron momentum. Therefore, the cross-section becomes

σ = 4π

P2

[K (ν+)K (u+)− K (ν−)K (u−)]2

[K (ν+)K (u−)+ K (ν−)K (u+)− D/ε′]2 + [K (ν+)K (u+)− K (ν−)K (u−)]2

(2.16)

If a special cases of interest is considered (special Glasser case), whena1 = a3 =
a23 = 1 anda2 = 0 ora1 = a2 = a23 = 1 anda3 = 0, then we obtain the diagonal
Green’s function outside the band as

G0(L , L; E) = 4

π2
√

E(E + 2)
K 2(k), E > 6 (2.2′)

where

k2 = 1

2

[
1−

√
E − 6

E + 2

]
, (2.3′)

A = 4

(E + 2)
, B = 4

(E + 2)
, C =

√
E(E + 2) (2.4′)

Green’s function outside and inside the band can be written as (all mathematical
Manipulations are given in the Appendix)

G0(L , L; E) =


4
π2
√

E(E+2)
K 2(k), E > 6

1
π2
√

2E
(2K (ν+)K (ν−)+ i [K 2(ν+)− K 2(ν−)]), 0 < E < 6

(2.5′)
where

y± = −
√

6− E

E + 2
(2.6′)

and

u± = ν± = 1

2

(
1±

√
6− E

8

)
(2.7′)–(2.8′)
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and

D = π2
√

2E (2.9′)

Therefore, the DOS is

DOS0(E) = [K 2(u+)− K 2(u−)]

π3
√

2E
(2.10′)

Thus our diagonal Greens function for the single impurity case can be written as

G(L , L; E) =



K 2(k)

π2
√

E(E + 2)/4− ε′K 2(k)
, E > 6

2K (u+)K (u−)− (ε′/π2
√

2E)[K 2(u+)+ K 2(u−)]2 + i [K 2(u+)− K 2(u−)]

1/π2
√

2E([π2
√

2E − 2ε′K (u+)K (u−)]2 + ε′2[K 2(u+)− K 2(u−)]2)

0 < E < 6 (2.11′)

and the DOS can be written as

DOS(E) = [K 2(u+)− K 2(u−)]

1/π2
√

2E([π2
√

2E − 2ε′K (u+)K (u−)]2 + ε′2[K 2(u+)− K 2(u−)]2)
(2.12′)

TheS-wave phase shiftδ0 is

tanδ0 = K 2(u+)− K 2(u−)

π2
√

2E/ε′ − 2K (u+)K (u−)
(2.13′)

The cross-section is

σ = 4π

P2

[K 2(u+)− K 2(u−)]2

[2K (u+)K (u−)− (π2
√

2E/ε′)]2+ [K 2(u+)− K 2(u−)]2
(2.14′)

3. RESULTS AND DISCUSSION

The results for the special Glasser cubic lattice are shown in Figs. 1–8. Figure 1
shows the DOS for the special perfect Glasser lattice case. It diverges asE goes to
zero and falls off exponentially as expected from eq. (2.10′). The real part of Green’s
function for the perfect lattice is displayed in Fig. 2. It has the same behavior as
above. Figure 3 gives the DOS for the special Glasser lattice case with a single
impurity potential strengthε′ (−0.8,−0.2, 0.0, 0.2, and 0.8). For the perfect lattice
case (ε′ = 0.00 in arbitrary units) the DOS diverges asE goes to zero and falls
off exponentially as expected. The peak value varies with the potential strength
and reaches its maximum atε′ = 0.2; the divergence of the DOS is removed by
adding such impurities. Figure 4 shows the DOS in three dimensions, with one
axis representing the potential strengthε′ varying between-1 and 1 (arbitrary units),
whereas the second axis is the energy scale varying between 0 and 6 as indicated
in the formalism.
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Fig. 1. The density of states (DOS) for the special perfect Glasser lattice case.

Fig. 2. Real part of Green’s function for the special perfect Glasser lattice case.

Fig. 3. The density of states (DOS) for the special Glasser
lattice case with single impurity for different potential
strengthsε′ (−0.8,−0.2, 0.0, 0.2, and 0.8).
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Fig. 4. Three-dimensional density of states (DOS) for the
special Glasser lattice case with single impurity for potential
strengthsε′ varying between−1 and 1 (arbitrary units).

The phase shiftδ0 is defined as the shift in the phase of the wave function be-
cause of the presence of the impurity potential. Figure 5 displaysδ0 for the special
Glasser lattice with single impurity for different potential strengthsε′(−0.8,−0.2,
0.0, 0.2, and 0.8). Forε′ = 0.00, δ0 vanishes as potential is turned off (perfect
lattice); this behavior is clear from the definition ofδ0. The phase shift is always
negative for all negative potential strengthsε′. In the range forε′ varying between
0.00 and 0.20,δ0 is positive. Forε′ varying between 0.2 and 1.0 we have a discon-
tinuity occurring in the curve as shown in Fig. 5. The phase shiftδ0 is separated
into two regions about the discontinuity point, a positive right hand region which
decreases asE increases and a negative left hand region which increases asE
increases. The discontinuity point moves to the right by increasing the values of
ε′. In Fig. 6, the phase shiftδ0 for the special Glasser lattice with single impurity

Fig. 5. The phase shift for the special Glasser lattice case
with single impurity for different potential strengthsε′ (−0.8,
−0.2, 0.0, 0.2, and 0.8).
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Fig. 6. The phase shiftδ0 for the special Glasser lattice case
with single impurity for potential strengthsε′ varying between
−1 and 1 (arbitrary units).

is shown for potential strengthsε′ varying between−1 and 1 (arbitrary units). The
cross sectionσ can be defined as the area an impurity atom presents to the incident
electron (total surface area of the sphere). Figure 7 shows the cross-section for
single substitutional impurity with different potential strengthsε′; the peak value
varies with the potential strength and reaches its maximum value of one for all
values ofε′ > 0.30. The peak value increases in range between 0.14 < ε′ < 0.19
asε′ increases and decreases otherwise.

The values are all positive sinceσ can be viewed as a sort of probability. It is re-
lated to some physical quantities such as the resistivity in metals. Figure 8 shows the

Fig. 7. The cross-sectionσ for the special Glasser lattice
case with single impurity for different potential strengths
ε′ (−0.8,−0.2, 0.0, 0.2, and 0.8).
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Fig. 8. The cross-sectionσ in three dimensions for the special
Glasser lattice case with single impurity for potential strengths
ε′ varying between−1 and 1 (arbitrary units).

cross-sectionσ in three dimensions for the special Glasser lattice with single impu-
rity for different potential strengthsε′ varying between−1 and 1 (arbitrary units).

APPENDIX: DERIVATION OF GREEN’S FUNCTION FOR THE GEN-
ERAL GLASSER CUBIC LATTICE INSIDE THE BAND

In this Appendix we derive an expression for Green’s function inside the
band in terms of complete elliptic integral of the first kind. Green’s function for
the general Glasser lattice cubic lattice outside the band is given by (Rashid, 1980)

G0(L , L; E) = 4

π2C
K (k+)K (k−), E > 4a1+ a2+ a3+ a23 (A1)

whereK (k±) is the complete elliptic integral of the first kind and

k2
± =

1

2

[
1±

√
A2− B2−

√
(1− A)2− B2

]
(A2)

C =
√

(E − a2+ a3+ a23)(E + a2− a3+ a23)

A = 4(Ea23+ a2a3)

(E − a2+ a3+ a23)(E + a2− a3+ a23)
(A3)

B = 4a1(E + a2+ a3− a23)

(E − a2+ a3+ a23)(E + a2− a3+ a23)

Or in the rangeE enclosed between−(a2− a3− a23)(a3− a2− a23) and
4a1+ a2+ a3+ a23
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k2
± =

1

2
(1+ iy∓), −(a2− a3− a23)(a3− a2− a23)

< E < 4a1+ a2+ a3+ a23 (A4)

where

y± = −
√

[B2− (1− A)2] ±
√

B2− A2 (A5)

The complete elliptic integral of the first kind is expressed as (Gradshteyn
and Ryzhik, 1965)

K (k) = π

2
2F1

(
1

2
,

1

2
; 1;k2

)
(A6)

where2F1(1/2, 1/2; 1;k2
)
is the Gauss hypergeometric function. Substituting (A6)

in (A1) we have

G0(E) = 2F1(1/2, 1/2; 1;k2
+)2F1(1/2, 1/2; 1;k2

−)

C
(A7)

Using the following transformations (Gradshteyn and Ryzhik, 1965; Bateman
Manuscript Project, 1963)

2F1

(
1

2
,

1

2
; 1;

1+ Z∓
2

)
= 0(1/2)

(0(3/4))2
2F1

(
1

4
,

1

4
;

1

2
; Z2
∓

)
+ 2Z∓

0(1/2)

(0(1/4))2
2F1

(
3

4
,

3

4
;

3

2
; Z2
∓

)
, (A8)

with

2F1(a, b; c; z2
∓) = (1− Z2

∓)−a
2F1(a, c− b; c;

Z2
∓

Z2∓ − 1
) (A9)

20(1/2)

(0(3/4))2
2F1

(
1

4
,

1

4
;

1

2
;

Z2
∓

Z2∓ − 1

)
= 2F1

(
1

2
,

1

2
; 1;

1

2

(
1+

√
Z2∓

Z2∓ − 1

))

+2F1

(
1

2
,

1

2
; 1;

1

2

(
1−

√
Z2∓

Z2∓ − 1

))
(A10)

20(−1/2)

(0(1/4))2

√
Z2∓

Z2∓ − 1
2F1

(
3

4
,

3

4
;

3

2
;

Z2
∓

Z2∓ − 1

)
= 2F1

(
1

2
,

1

2
; 1;

1

2

×
(

1−
√

Z2∓
Z2∓ − 1

))
− 2F1

(
1

2
,

1

2
; 1;

1

2

(
1+

√
Z2∓

Z2∓ − 1

))
(A11)
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Substituting (A8)–(A11) in (A7) then we have

G0(L , L; E) = (K (ν+)K (u−)+ K (ν−)K (u+)+ i (K (ν+)K (u+)− K (ν−)K (u−)))

D
,

−(a2 − a3 − a23)(a3 − a2 − a23) < E < 4a1 + a2 + a3 + a23 (A12)

where

ν2
± =

1

2

(
1±

√
Z2−

Z2− + 1

)
(A13)

u2
± =

1

2

(
1±

√
Z2+

Z2+ + 1

)
(A14)

and

D = π2√(E − a2+ a3+ a23)(E + a2− a3+ a23)

2
[(

y2+ + 1
)(

y2− + 1
)]−1/4 (A15)

If we have a single impurity then Green’s function is defined as (Economou,
1983)

G(L , L; E) = G0(L , L; E)

1− ε′G0(L , L; E)
(A16)

After some mathematical manipulation Eq. (A16) becomes
G(L , L; E)

= D[K (ν+)K (u−)+ K (ν−)K (u+)+ i (K (ν+)K (u+)− K (ν−)K (u−))] − ε′[K 2(ν+)+ K 2(ν−)][ K 2(u+)+ K 2(u−)]

[D − ε′(K (ν+)K (u−)+ K (ν−)K (u+))]2 + ε′2[K (ν+)K (u+)− K (ν−)K (u−)]2
,

−(a2 − a3 − a23)(a3 − a2 − a23) < E < 4a1 + a2 + a3 + a23 (A17)

Thus, theS-phase shift, and scattering cross-section can be evaluated in terms
of complete elliptic integrals of the first kind as shown in the text.
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